Azure Databricks Best Practice Guide

Azure Databricks ‘

Azure Databricks (ADB) has the power to process terabytes of data, while simultaneously running
heavy data science workloads. Over time, as data input and workloads increase, job performance
decreases. As an ADB developer, optimizing your platform enables you to work faster and save

hours of effort for you and your team. Below are the 18 best practices you need to optimize your
ADB environment.

1. Use Cache table/dataframe for re-usable tables or confirmed dimentions.

cache() is an Apache Spark transformation that can be used on a DataFrame, Dataset, or
RDD when you want to perform more than one action. cache() caches the specified
DataFrame, Dataset, or RDD in the memory of your cluster’s workers. Since cache() is a
transformation, the caching operation takes place only when a Spark action (for example,

count(), show(), take(), or write()) is also used on the same DataFrame, Dataset, or RDD in
a single action.

df=spark.table(“input_table name™)

df.cache.take(5) # Call take(5) on the DataFrame df, while also caching it
df.count() # Call count() on the DataFrame df

dfl=spark.read.parquet(input_pathl)
df2=spark.read.parquet(input_path2)

dfl.cache() # Cache DataFrame dfl

joined_df = dfl.join(df2, dfl.id==df2.id, ‘inner’) # Join DataFrame dfl and df2
filtered_df = joined_df.filter("name == ‘Jchn’") # Filter the joined DataFrame for the name “John™
dfl.count() # Call count() on the cached DataFrame

filtered_df.show() # Show the filtered DataFrame filtered_df

df=spark.table{“input table name™)

df.cache.count(} # Call count() on the DataFrame df, while also caching it

df.count() # Call count() on the DataFrame df
df .filter(“name=="John*"}.count()

You should call count() or write() immediately after calling cache() so that the entire
DataFrame is processed and cached in memory. If you only cache part of the DataFrame,

the entire DataFrame may be recomputed when a subsequent action is performed on the
DataFrame.

2. Create partitions on every table and for fact tables use partition column on key join
column like country_code, city, market_code

Delta tables in ADB support partitioning, which enhances performance. You can patrtition by
a column if you expect data in that partition to be at least 1 GB. If column cardinality is high,
do not use that column for partitioning. For example, if you partition by user ID and there
are 1M distinct user IDs, partitioning would increase table load time. Syntax example:

CREATE TABLE events (

DATE DATE

,eventld STRING

,eventType STRING

,data STRING

) USING delta PARTITIONED BY (DATE)

-- create a partitioned table and insert a few rows.

USE salesdb;

CREATE TABLE customer(id INT, name STRING) PARTITIONED BY (state STRING, city STRING);
INSERT INTO customer PARTITION (state = 'CA', city = 'Fremont') VALUES (100, 'John');
INSERT INTO customer PARTITION (state = 'CA', city = 'San Jose') VALUES (200, 'Marry');
INSERT INTO customer PARTITION (state = 'AZ', city 'Peoria') VALUES (300, 'Daniel');

-- Use the PARTTIOMED BY clause in a table definition
> CREATE TABLE student(university STRING,
major STRING,
name STRING)
PARTITIONED BY(university, major)

> CREATE TABLE professor(name STRING)
PARTITIONED BY(university STRING,
department STRING);

3. Land data in Blob Store/ADLS partitioned into separate directory

Avoid high list cost on large directories like Hierarichal folder structure

Example of date partitioning at year/month level:
’i Raw Data
E Sales
/& salesforce
@ CustomerContacts
. @ 2018
/@ 201812
CustContact_2018 12 01.csv
CustContact_2018 12 02.csv
CustContact_2018 12 03.csv

ﬁ CustomerActivity
-/ 2018
/@ 201812
CustActivity 2018 12 0l.csv
CustActivity 2018 12 02.csv
CustActivity 2018 12_03.csv

ags I

Data Lake Storage Zones

Data Source Data Source Data Source cus.mm!r
Classification
. Product
les.
O

Marketing

Bine_Sales 1.6

« Transient folder for data to land « Valid data are moved to Raw « Optional Layer » Data is cleansed and Ready for » Mostly targeted for Data
« Data move to Bad/Quarantine if folder in native format and « Standard Format best suitable Consumption Selentist
data are corrupted for manual ready for Ingestion for Curated Layer » Categorized into Subject « Organised per Project
intervention + Data are categorised into Data « Have option to perform some AreafFiles « Data comes from Curated and
Source/Year/Month standardise data cleansing (e.g. « Option to partition data if may also source from
+ Depending on requirement, removing special characters) requirement exist Subject standardized layer
folders can further categorised « Characters encoding Area/File/Partition Structure
into Day/Hour (e.g. Year/Month , Region)

4. Use Delta Lake performance features like OPTIMIZE with ZORDER
Z-Ordering (multi-dimensional clustering)
Z-Ordering is a technigue to colocate related information in the same set of files. This co-
locality is automatically used by Delta Lake on Databricks data-skipping algorithms to

dramatically reduce the amount of data that needs to be read. To Z-Order data, you specify
the columns to order on in the ZORDER BY clause:

SQL

OPTIMIZE events
WHERE date >= current_timestamp() - INTERVAL 1 day
ZORDER BY (eventType)

5. Enable Auto Optimize option for all staging tables.

Enable Auto Optimize

You must explicitly enable Optimized Writes and Auto Compaction using one of the
following methods:

> New table: Set the table
properties delta.autoOptimize.optimizeWrite = true and delta.autoOptimize.autoCompact =t
rue in the CREATE TABLE command.

» Auto Optimize consists of two complementary features: Optimized Writes and Auto
Compaction.

» CREATE TABLE student (id INT, name STRING, age INT) TBLPROPERTIES
(delta.autoOptimize.optimizeWrite = true, delta.autoOptimize.autoCompact = true)

How Optimized Writes works

Databricks dynamically optimizes Apache Spark partition sizes based on the actual data, and attempts to write out
128 MB files for each table partition. This is an approximate size and can vary depending on dataset characteristics.

Traditional Writes Optimized Writes

Executors é Executors)
2 e o)
\/

_ /
‘ hJ (v v v)
. - .)))
Partition 1 Partition 2 Partition 3 Partition 1 Partition 2 Partition 3
Files in Delta Tables \ Filesin Delta Tables Y,

NOTE:

» Databricks does not support Z-Ordering with Auto Compaction as Z-Ordering is
significantly more expensive than just compaction.

» Auto Compaction generates smaller files (128 MB) than OPTIMIZE (1 GB).

» Auto Compaction greedily chooses a limited set of partitions that would best leverage
compaction. The number of partitions selected will vary depending on the size of cluster
it is launched on. If your cluster has more CPUs, more partitions can be optimized.

» To control the output file size, set the Spark
configuration spark.databricks.delta.autoCompact.maxFileSize. The default value
is 134217728, which sets the size to 128 MB. Specifying the value 104857600 sets the

file size to 100MB.
> spark.sql("set spark.databricks.delta.autoCompact.enabled = true")

6. Decide partition size (block size default is 128MB). Based on that it will create no of

files at table.

Table size

10GB

1TB

2.56TB

3TB

STB

7TB

10TB

20TB

50TB

100TB

Target file size
256MB

256MB

256MB

307MB

512MB

716MB

1GB

1GB

1GB

1GB

Approximate number of files in table
40

4096

10240

12108

17339

20784

24437

34437

64437

14437

7. Use hints for improving query performance like BROADCAST.

Join hints

Join hints allow you to suggest the join strategy that Databricks Runtime should use. When
different join strategy hints are specified on both sides of a join, Databricks Runtime
prioritizes hints in the following
order: BROADCAST over MERGE over SHUFFLE_HASH over SHUFFLE_REPLICATE_N
L. When both sides are specified with the BROADCAST hint or the SHUFFLE_HASH hint,
Databricks Runtime picks the build side based on the join type and the sizes of the
relations. Since a given strategy may not support all join types, Databricks Runtime is not
guaranteed to use the join strategy suggested by the hint.

Join hint types

BROADCAST

Use broadcast join. The join side with the hint is broadcast regardless

of autoBroadcastJoinThreshold. If both sides of the join have the broadcast hints, the
one with the smaller size (based on stats) is broadcast. The aliases

for BROADCAST are BROADCASTJOIN and MAPJOIN.

Broadcast Joins in Spark

- Uses broadcasting mechanism to collect data to driver
- Planned per-join using size estimation and config
spark.sql.autoBroadcastJoinThreshold

. BroadcastHashJoin(BHJ)

* Driver builds in-memory hashtable to distribute to executors

- BroadcastNestedLoopJoin (BNLJ)

= Distributes data as array to executors
» Useful for non-equi joins
» Disabled in Prism for stability reasons

Why is BHJ slower?

« Driver collects 15M rows

« Driver builds hashtable

- Driver sends hashtable to executor
- Executor deserializes hashtable

Broadcasting in Spark

Spark's broadcasting mechanism is inefficient
= Broadcasted data goes through the driver
= Too much broadcasted data can run the driver out of memory

casted data to driver

(1) Executors sends broad Executor 1
Driver
(2) Driver sg
nds broadcasteq data to executors Executor 2

Use shuffle sort merge join. The aliases
for MERGE are SHUFFLE_MERGE and MERGEJOIN.

« MERGE

e SHUFFLE_HASH

Use shuffle hash join. If both sides have the shuffle hash hints, Databricks Runtime
chooses the smaller side (based on stats) as the build side.

e SHUFFLE_REPLICATE_NL

Use shuffle-and-replicate nested loop join.

-- Join Hints for broadcast join

> SELECT /*+ BROADCAST(t1) */ * FROM t1 INNER JOIN t2 ON t1.key = t2._key;

> SELECT /*+ BROADCASTIOIN (t1) */ * FROM t1 left JOIN 2 ON tl.key = t2_key;
> SELECT /*+ MAPJIOIN(t2) */ * FROM t1 right JOIN t2 ON tl.key = t2.key;

-- Join Hints for shuffle sort merge join

> SELECT /*+ SHUFFLE MERGE(t1) */ * FROM t1 INNER JOIN t2 ON tl.key = t2.key;
> SELECT /*+ MERGEJOIN(t2) #/ * FROM t1 INNER JOIN t2 ON tl.key = t2.key;

> SELECT /*+ MERGE(t1l) */ * FROM t1 INNER JOIN t2 ON tl.key = t2.key;

-- Join Hints for shuffle hash join
> SELECT /*+ SHUFFLE HASH(t1) */ * FROM t1 INNER JOIN t2 ON tl.key = t2.key;

-- Join Hints for shuffle-and-replicate nested loop join
> SELECT /*+ SHUFFLE _REPLICATE NL(t1) */ * FROM t1 INNER JOIN t2 ON tl.key = t2.key;

Broadcast Join vs. Shuffle Join

Broadcast Join Shuffle Join

Avoids shuffiing the bigger side Shuffles both sides

Naturally handles data skew Can suffer from data skew

7Che;for selective joins Can produce unnecessary intermediate results
‘Broadcasted data needs to fit in memory | Data can be spiled and read from disk

Cannot be used for certain outer joins . C;n be used for all]oh; . :

Where applicable, broadcast join should be faster than shuffle join
8. Use Repartition hints for balancing partitions.
Partitioning hint types
e COALESCE

Reduce the number of partitions to the specified number of partitions. It takes a partition
number as a parameter.

« REPARTITION

Repartition to the specified number of partitions using the specified partitioning
expressions. It takes a partition number, column names, or both as parameters.

« REPARTITION_BY_RANGE

Repartition to the specified number of partitions using the specified partitioning
expressions. It takes column names and an optional partition number as parameters.

e REBALANCE

The REBALANCE hint can be used to rebalance the query result output partitions, so
that every partition is of a reasonable size (not too small and not too big). It can take
column names as parameters, and try its best to partition the query result by these
columns. This is a best-effort: if there are skews, Spark will split the skewed partitions,
to make these partitions not too big. This hint is useful when you need to write the result
of this query to a table, to avoid too small/big files. This hint is ignored if AQE is not
enabled.

SELECT /*+ COALESCE(3) */ * FROM t;

SELECT /*+ REPARTITION(3) */ * FROM t;

SELECT /*+ REPARTITION(c) */ * FROM t;

SELECT /*+ REPARTITION(3, c) */ * FROM t;

SELECT /*+ REPARTITION_BY RANGE(c) */ * FROM t;

SELECT /*+ REPARTITION_BY RANGE(3, c) */ * FROM t;

SELECT /*+ REBALANCE */ * FROM t;

SELECT /*+ REBALANCE(c) */ * FROM t;

9. Delete temporary tables after notebook execution

Delete temporary tables that were created as intermediate tables during notebook
execution. Deleting tables saves storage, especially if the notebook is scheduled dalily.

spark.catalog.dropTempView({ “"temp view name") //drops the table

spark.sql("drop view hvac");

10.Use dbutils.fs.rm() to permanently delete temporary table metadata

ADB clusters store table metadata, even if you use drop statements to delete. Before
creating temporary tables, use dbutils.fs.rm() to permanently delete metadata. If you don’t
use this statement, an error message will appear stating that the table already exists. To
avoid this error in daily refreshes, you must use dbutils.fs.rm().

11.Use Lower() or Upper() when comparing strings or common filter conditions to avoid
losing data

ADB can't compare strings with different casing. To avoid losing data, use case conversion
statements Lower() or Upper(). Example:

SELECT 'MAQSoftware' = 'magsoftware’ AS WithOutLowerOrUpper
,LOWER('MAQSoftware') = 'magsoftware' AS WithLower
JUPPER(‘MAQSoftware') = 'MAQSOFTWARE' AS WithUpper

12.Use custom functions to simplify complex calculations

If your calculation requires multiple steps, you can save time and by creating a one-step
custom function. ADB offers a variety of built in SQL functions, however to create custom
functions, known as user-defined functions (UDF), use Scala. Once you have a custom
function, you can call it every time you need to perform that specific calculation.

13.Use Delta tables for DML commands

In ADB, Hive tables do not support UPDATE and MERGE statements or NOT NULL and
CHECK constraints. Delta tables do support these commands, however running large
amounts of data on Delta tables decreases query performance. So not to decrease
performance, store table versions.

10

[T v T R o 3 TR W B o K O e B

=
@

W oo~ WM

drop table IF EXISTS locations;
create table IF NOT EXISTS locations (id int,name string);
insert inte locations

select 1,'Bangalore' union all
select 2, 'Hyderabad' union all
select 2, 'Chennai' union all
select 4, 'Pune' union all
select 5, 'Mumbai' union all
select 6, 'Delhi’' union all
select 7,'Vijag' union all
select 8, 'Kolkatta'

delete FROM all_employee

WHERE loc_id in (SELECT id FROM locations where name='Chennai')

MERGE INTO events

USING updates

ON events.event_id = updates.event_id

WHEN MATCHED AND updates.delete==true THEN
delete

WHEN MATCHED THEN
UPDATE SET events.data = updates.data

WHEN NOT MATCHED

THEN INSERT (event_id, event_date, data,delete) VALUES (event_id,event_date, data,delete)

1 wupdate all_employee
2 set loc id=4
3 where id=3

11

14.Use views when creating intermediate tables

If you need to create intermediate tables, use views to minimize storage usage and save
costs. Views are session-oriented and will automatically remove tables from storage after
guery execution. For optimal query performance, do not use joins or subqueries in views.

1 emp_df.createOrReplaceTempView("t_emp") # this view will be available at User Session
2 emp_df.createOrReplaceGlobalTempView("gv_emp") # this view will be available at SparkSession level(cluster)

globalTempViewManager

hJ

[GlobalTempViewManager]

1 CREATE OR REPLACE VIEW V_employees as
2 SELECT * FROM all_employee
B WHERE working_years > 5;

15.Enable adaptive query execution (AQE)

AQE improves large query performance. By default, AQE is disabled in ADB. To enable it,
use: set spark.sgl.adaptive.enabled = true;

Enabling AQE

AQE can be enabled by setting SQL config spark.sqgl.adaptive.enabled to true (default false
in Spark 3.0), and applies if the query meets the following criteria:

It is not a streaming query

12

It contains at least one exchange (usually when there’s a join, aggregate or window
operator) or one subquery

Optimizing Shuffles

Choosing Join Strategies
Handling Skew Joins
Understand AQE Query Plans
The AdaptiveSparkPlan Node
The CustomShuffleReader Node
Detecting Join Strategy Change

Nouoh,rwnhE

16.Use key vault credentials when creating mount points

When creating mount points to Azure Data Lake Storage (ADLS), use a key vault client ID
and client secret to enhance security.

HomePage / Create Secret Scope

Create Secret Scope = Cance (4]

A store for secrets that is identified by a name and backed by a specific store
type. Learn more

Scope Name @
r CSVProjectKeyVault o

Manage Principal @

Creator o

Azure Key Vault @
DMS Name

hitps: net/ e

Resource 1D

Isubscript af 1 e

13

Python code

Get list of all scopes

mysecrets = dbutils.secrets.listScopes()

Loop through list

for secret in mysecrets:
print(secret.name)

Mount an Azure Blob storage container

dbutils. fs.mount(
source = "wasbs://<container-name>@<storage-account-name>.blob.core.windows.net",

1

2

3 mount_point = "/mnt/iotdata",

4 extra_configs = {"fs.azure.account.key.<storage-account-name>.bleb.core.windows.net":dbutils.secrets.get(scope = "<scope-name>", key = "<key-name>")1)

17.Query directly on parquet files from ADLS

If you need to use the data from parquet files, do not extract into ADB in intermediate table
format. Instead, directly query on the parquet file to save time and storage. Example:
SELECT ColumnName FROM parquet. Location of the file"

-- Creates a CSV table from an external directory

> CREATE TABLE student USING CSV LOCATION '/mnt/csv files';

1 %sql
2 -— Creates a parguet] table from an external directory
3 CREATE TABLE student USING parquet LOCATION '/mnt/parquet_files';

14

18.Choosing cluster mode for individual jobs execution and common jobs execution.
For individual job execution use standard mode cluster.

For group of jobs and multiple jobs with dependency tables in parallel or sequential load
choose High Concurrency Mode.

Standard Mode High Concurrency Mode
Targeted User Data Engineers Data Scientists, Business Analysts
Languages Scala, Java, SQL, Python, R SQL, Python, R
Best Use Batch Jobs for ETL Data Exploration
Security Model Single User Multi User
Isolation Medium High
Table-level security No Yes
Query Preemption No Yes
AAD Passthrough No Yes

1. Deploy a shared cluster instead of letting each user create their own cluster.
Create the shared cluster in High Concurrency mode instead of Standard mode.

3. Configure security on the shared High Concurrency cluster, using one of the following
options:
o Turn on AAD Credential Passthrough if you’re using ADLS
o Turn on Table Access Control for all other stores

no

15

Workload —

Attribute
l

Interactive

Batch

Optimization Metric: What
matters to end users?

Low execution time: low
individual query latency.

Maximizing jobs executed over
some time period: high
throughput.

Submission Pattern: How is the
work submitted to ADB?

By users manually. Either
executing Notebook queries or

Automatically submitted by a
scheduler or external workflow
tool without user input.

exploring data in a connected BI
tool.

Cost: Are the workload’s
demands predictable?

No. Understanding data via
interactive exploration requires
multitude of queries impossible

Yes, because a Job’s logic is
fixed and doesn’t change with
each run.

to predict ahead of time.

1. Minimizing Cost: By forcing users to share an autoscaling cluster you have configured

with maximum node count, rather than say, asking them to create a new one for their use
each time they log in, you can control the total cost easily. The max cost of shared cluster
can be calculated by assuming it is running X hours at maximum size with the particular
VMs. It is difficult to achieve this if each user is given free reign over creating clusters of
arbitrary size and VMs.

Optimizing for Latency: Only High Concurrency clusters have features which allow
queries from different users share cluster resources in a fair, secure manner. HC clusters
come with Query Watchdog, a process which keeps disruptive queries in check by
automatically pre-empting rogue queries, limiting the maximum size of output rows
returned, etc.

Security: Table Access control feature is only available in High Concurrency mode and
needs to be turned on so that users can limit access to their database objects (tables,
views, functions, etc.) created on the shared cluster. In case of ADLS, we recommend
restricting access using the AAD Credential Passthrough feature instead of Table Access
Controls.

16

19.Arrive at Correct Cluster Size by Iterative Performance Testing

It is impossible to predict the correct cluster size without developing the application because
Spark and Azure Databricks use numerous techniques to improve cluster utilization. The broad
approach you should follow for sizing is:

1. Develop on a medium sized cluster of 2-8 nodes, with VMs matched to workload class
as explained earlier.

2. After meeting functional requirements, run end to end test on larger representative data
while measuring CPU, memory and I/O used by the cluster at an aggregate level.

3. Optimize cluster to remove bottlenecks found in step 2
o CPU bound: add more cores by adding more nodes

o Network bound: use fewer, bigger SSD backed machines to reduce network
size and improve remote read performance

o Disk I/O bound: if jobs are spilling to disk, use VMs with more memory.

Repeat steps 2 and 3 by adding nodes and/or evaluating different VMs until all obvious
bottlenecks have been addressed.

Performing these steps will help you to arrive at a baseline cluster size which can meet SLA on
a subset of data. In theory, Spark jobs, like jobs on other Data Intensive frameworks (Hadoop)
exhibit linear scaling. For example, if it takes 5 nodes to meet SLA on a 100TB dataset, and
the production data is around 1PB, then prod cluster is likely going to be around 50 nodes in
size. You can use this back of the envelope calculation as a first guess to do capacity planning.
However, there are scenarios where Spark jobs don’t scale linearly. In some cases this is due
to large amounts of shuffle adding an exponential synchronization cost (explained next), but
there could be other reasons as well. Hence, to refine the first estimate and arrive at a more
accurate node count we recommend repeating this process 3-4 times on increasingly larger
data set sizes, say 5%, 10%, 15%, 30%, etc. The overall accuracy of the process depends on
how closely the test data matches the live workload both in type and size.

17

N Ol c | Create Clust 2-8 Workers: 28.0-112.0 GB Memory, 8-32 Cores, 1.5-6 DBU
ew Cluster Ellels LCRR Y 1 Driver: 14.0 GB Memory, 4 Cores, 0.75 DBU @
Cluster Name

Test

Cluster Mode ©
Standard

Databricks Runtime Version @ Learn more

Runtime: 8.2 (Scala 2.12, Spark 3.1.1)
Databricks Runtime 8.x uses Delta Lake as the default table format. Learn more

(] Use your own Docker container @

Autopilot Options
Enable autoscaling @

Terminate after 120 minutes of inactivity 12

Worker Type © Min Workers Max Workers

Standard_DS3_v2 14.0 GB Memory, 4 Cores, 0.75 DBU 2 8 [[) Spot instances @

Configure separate pools for workers and drivers for flexibility. Learn more

Driver Type

Same as worker 14.0 GB Memory, 4 Cores, 0.75 DBU

» Advanced Options

Different Azure VM instance types
Compute Optimized Memory Optimized Storage Optimized General Purpose
FS DSv2 L DSv2

H ESv3 DSv3

Azure VM instance type information

Type Processor Ram SSD Storage
FS Haswell (Skylake not currently supported) 1 core ~2GB 1 core ~16GB
H High-Performance 1 core ~7GB 1 core ~125GB
DSv2 (Memory Optimized) Haswell 1 core ~7GB 1 core ~14GB
ESv3 High-performance (Broadwell) 1 core ~8GB 1 core ~16GB
L 1 core ~8GB 1 core ~170GB
DSv2 (General Purpose) 1 core ~3.5GB 1 core ~7GB
DSv3 1 core ~4GB 1 core ~8GB

« Fewer big instances > more small instances

(o]

o

o

Reduce network shuffle; Databricks has 1 executor / machine

Applies to batch ETL mainly (for streaming, one could start with smaller instances
depending on complexity of transformation)

Not set in stone, and reverse would make sense in many cases - So sizing exercise
matters

e Size based on the number of tasks initially, tweak later

(o]

Run the job with a small cluster to get idea of # of tasks (use 2-3x tasks per core for base
sizing)

e Choose based on workload (Probably start with F-series or DSv2):

o O O O

20

ETL with full file scans and no data reuse - F / DSv2
ML workload with data caching - DSv2 / F

Data Analysis - L

Streaming - F

.Specify distribution when publishing data to Azure Data Warehouse (ADW)

Use hash distribution for fact tables or large tables, round robin for dimensional tables,
replicated for small dimensional tables. Example:

df.write \

format("com.databricks.spark.sqgldw") \

.option("url", "jdbc:sqlserver://

ll) \

.option("forwardSparkAzureStorageCredentials”, "true") \
.option("dbTable", "my_table_in_dw_copy") \
.option("tableOptions", "table_options") \

.save()

19

21.Understand Databricks Pricing on individual like Compute,storage,VM and
bandwidth.

Service or Resource Pricing
DBUs DBU pricing
VMs VM pricing

Public IP Addresses Public IP Addresses pricing

Blob Storage Blob Storage pricing

Managed Disk Managed Disk pricing

Bandwidth Bandwidth pricing

A Corst M Do ¥ | 4 a n

t_Azure_CosthManagement/Menw/costanalys a 4 W a :
T o $ o o @
¥] > Coet Mlgragerren Comicda ([Cema] - Cogt snalyss
Y th Management: Contoso (Demo) - Cost analysis =
]irw B me

® v © o v oot

& Gow billng aeciun Sospe |) Commse el Accumulated costs ~ Boamie o A v

B Acvesyconirol . - e — N——

2 D e v s $54,01590. $80,301.76 . 4 $10,... sl Gmiatumntind s

Cind Mot

ey ".

B o aleeti

T o

il i GeTRTEraly =

F e A] (T % By [oskpH [1= Foreoist ool it Kbt

B Do corsaacs o

Samaln sty iy sreos rame < cation R

Bt suppint requsit $18816.... |511_E.43.... |$32.aaz
754635 |57546.35 N |s763020
| 5440620 5720111 lsa623.20
|'53.806.52 Js572054 ls2513.5
! $3,346.15 [34. 74378 | $2.012.38

1 I ¥
A

Example 1: If you run Premium tier cluster for 100 hours in East US 2 with 10 DS13v2
instances, the billing would be the following for All-purpose Compute:

VM cost for 10 DS13v2 instances —100 hours x 10 instances x $0.598/hour = $598

DBU cost for All-purpose Compute workload for 10 DS13v2 instances —100 hours x
10 instances x 2 DBU per node x $0.55/DBU = $1,100

The total cost would therefore be $598 (VM Cost) + $1,100 (DBU Cost) = $1,698.

Example 2: If you run Premium tier cluster for 100 hours in East US 2 with 10 DS13v2
instances, the billing would be the following for Jobs Compute workload:

VM cost for 10 DS13v2 instances —100 hours x 10 instances x $0.598/hour = $598

DBU cost for Jobs Compute workload for 10 DS13v2 instances —100 hours x 10
instances x 2 DBU per node x $0.30/DBU = $600

The total cost would therefore be $598 (VM Cost) + $600 (DBU Cost) = $1,198.

In addition to VM and DBU charges, there will be additional charges for managed disks,

publ

ic IP address, bandwidth, or any other resource such as Azure Storage, Azure Cosmos

DB depending on your application.

22.Customize cluster termination time

Terminating inactive clusters saves costs. ADB automatically terminates clusters based on
a default down time. As different projects have different needs, it's important to customize

21

the down time to avoid premature or delayed termination. For example: set a longer down

time for development environments, as work is continuous.

2-8 Workers: 61.0-244.0 GB M , 8-32 C
NeW Clus‘ter Cancel Create Cluster DBU /hour: 3 -9 1 D,NS," 39'055 GB Memory, 4 Cg:ggry e
Policy @ Ul | JSON
Unrestricted

Cluster Name
Test
Cluster Mode @
Standard
Databricks Runtime Version @ Learn more
Runtime: 8.2 (Scala 2.12, Spark 3.1.1)
(EIEY Databricks Runtime 8.x uses Delta Lake as the default table format. Learn more
() Use your own Docker container @

Autopilot Options
Enable autoscaling @

OEn i (2]
Terminate after 120 minutes of inactivity @

Worker Type @ Min Workers Max Workers
i3.xlarge 30.5 GB Memory, 4 Cores 2 8

Driver Type
i3.xlarge 30.5 GB Memory, 4 Cores

DBU/hour:3-9 &

» Advanced Options

23.Enable cluster autoscaling

ADB offers cluster autoscaling, which is disabled by default. Enable this feature to enhance

job performance. Instead of providing a fixed number of worker nodes during cluster

creation, you should provide a minimum and maximum. ADB then automatically reallocates

the worker nodes based on job characteristics.

22

2-8 Workers: 61.0-244.0 GB Memory, 8-32 Cores
NGW O|USJ[e|’ Cancel Create Cluster DBU / hour: 3 -9 1 Driver: 30.5 GB Memory, 4 Co,,esw

Policy @ Ul | JSON

Unrestricted
Cluster Name
Test
Cluster Mode @
Standard
Databricks Runtime Version © Learn more
Runtime: 8.2 (Scala 2.12, Spark 3.1.1)
IWEIEN Databricks Runtime 8.x uses Delta Lake as the default table format. Learn more
[0 Use your own Docker container @

Autopilot Options

| Enable autoscaling Oj

(J Enable autoscaling local storage @

Terminate after 120 minutes of inactivity @

Worker Type @ Min Workers Max Workers
i3.xlarge 30.5 GB Memory, 4 Cores 2 8

Driver Type
i3.xlarge 30.5 GB Memory, 4 Cores

DBU/hour:3-9 @

» Advanced Options

24.Use Azure Data Factory (ADF) to run ADB notebook jobs

If you run numerous notebooks daily, the ADB job scheduler will not be efficient. The ADB
job scheduler cannot set notebook dependency, so you would have to store all notebooks

23

in one master, which is difficult to debug. Instead, schedule jobs through Azure Data
Factory, which enables you to set dependency and easily debug if anything fails.

(D pipelinel L] "aERE
Activities ¥ « 5% Saveastemplate Validate [> Debug 4% Add trigger {} B
J2 Search activities
P Move & transform
[Azure Data Explorer
[Azure Function +
I Batch Service
4 Databricks
@ Notebook
@ Jar
=}
@ Python
ot
+0
[Data Lake Analytics
I General ; , -
. General Azure Databricks Settings User properties ~
[HDInsight
I Iteration & conditionals Name * ‘ Notebookl | Learn mare [§
I Machine Learning
I Power Query Description
]
Timeout @ [7.00:0000 |
Retry & ‘ 0 |
Retry interval © ‘ 30 |
Secure output @ M
Secure input (0 D

25.Use the retry feature in ADF when scheduling jobs

24

Processing notebooks in ADB through ADF can overload the cluster, causing notebooks to
fail. If failure occurs, the entire job should not stop. To continue work from the point of
failure, set ADF to retry two to three times with five-minute intervals. As a result, the
processing should continue from the set time, saving you time and effort.

I pipelinel [] 7

« o0 Saveastemplate ~ Validate [> Debug 4% Add trigger {} B

«

Activities

&2 Search activities

I Move & transform

I» Azure Data Explorer [
Notebook
P Azure Function +
) o
b Batch Service Notebook1
4 Databricks O Ih @
g’% Notebook
g’% Jar
O
&
Sg Python
0+
|
I Data Lake Analytics
P General -
1 1
. General Azure Databricks Settings User properties o~
I HDInsight
I Iteration & conditionals Name * | Notebookl | Learn more [3
I Machine Learning
I Power Query Description
]
Timeout @ | 7.00:00:00 |
I Retry © |] I |
Retry interval © | 30 |
Secure output @]
Secure input @]

26.Consider upgrading to ADB Premium

25

Your business’s data has never been more valuable. Additional security is a worthwhile
investment. ADB Premium includes 5-level access control.

Home > Azure Databricks Service

Azure Databricks Service X

Basics* Networking Tags Review + Create

Project Details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

Subscription * @ | <your subscription> hd |
I— Resource group * © | (New) databricks-quickstart v |
Create new

Intance Details

Workspace name * | mydatabricksws v |
Location * | West US 2 hd |
Pricing Tier * @ | Standard (Apache Spark, Secure with Azure AD) ~ |

Standard (Apache Spark, Secure with Azure AD)

| Premium (+ Role-based access controls) I

Trial (Premium - 14-Days Free DBUs)

westus - Access control (IAM)

Azure Databricks Service

je « + Add @ ove ma Roles EJ Refresh ? Help
. Overview Name @ Type @

[|
H' Activity log

3 itemns (3 Users)
24 Access control {IAM)

NAME TYPE
' Tags
COMNTRIBUTOR
SETTINGS
i i _ USEI
Virtual Metwork Peerings
B Llocks
OWMNER
Automation script
_ USEI
SUPPORT + TROUBLESHOOTING
New support rEqUESt _ User
Create Cluster
New Cluster Greato Ghuster o
Cluster Name
L Standard
n concurmant SOL, Python, and R workloads Recommended for single-user clusters. Can mun SO0, Python, R
Doas nol supporl Scala. Praviously known as Sarverless A ala workloads
. L o
Latest slable (Scala 2 11 H
Python Version @
2]
Diriver Type
ey Same g5 worke &
Iin Workers
Standard DS13 w2 A B 2 8 # Enable autoscaling @
Auto Termir on @
Terminabe aftes 1] manutes of inactivity

Table Access Control @

Enable table access control and only allow Python and SQL commands

Spark Config @

27

Permission Settings for: test1234

Who has access:

28 admins Can Manage +~ ©
- Can Manage v ©
& my-group Can Read v x

Add Users, Groups, and Service Principals:

Hocs | w Can Read K] Add

& Groups

David's Group

docs @
X X X X
X X X X

X X X
X X X
X X

X X

X

28

Workspace

Workspace

? Documentation
</> Release Notes
=" Training & Tutorials
Shared
& Users

Users

%

i b e
Create
Clone

Impaort
Export

Permmissions

29

